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Strangeness Exchange Resonances 

Harry J. Lipkin 

I. INTRODUCTION 

1. 1 Strangeness Exchange and Strangeness Analog Resonances 

When a kaon strikes a nucleus and one or two fast pions are 

emitted a unit of strangeness has been transferred to the nucleus to make 

a hypernuclear state. Some examples of such reactions are 

and 

K- + (Z, A) -) rl- t /,(Z, A) ( ia) 

K- t (Z, A) -) 7’ f *(Z - 1, A) (lb) 

K- t (Z, A) -) TT’ + c(Z - 2, A) (lc) 

K- t (Z, A) -t n+ t n- + *(Z - 1, A). (2) 

If the momentum transfer to the nuclear target is very small 

there is a high probability that the strangeness has been transferred to a 

single nucleon inside the nucleus, transforming it into a hyperon without 

changing the wave function of the nucleon. The probability of producing 

hypernuclear resonant continuum states by such strangeness exchange 

processes was first pointed out in 1964. However this paper was ignored 

as it was published in an obscure journal which is not widely read. 
1 

Additional theoretical predictions of such resonant states’ were also 

forgotten by the time the first experimental indications for continuum 

excited states of hypernuclei were observed. 
3 

At that time a more detailed 

theoretical discussion was given which included some quantitative predictions 

for excitation energies of these states. 
4 

Now that new experimental evidence 

has been presented for the existence of these states, 
5. . 

it is time to review 

the theoretical background. 

Strangeness exchange can occur on any nucleon in a complex 

nucleus and can thus produce many different states. There is also the 
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possibility of coherent excitation of a particular linear combination of 

states, each of which has a different nucleon in the nucleus changed into a 

hype ran. One such linear combination has been called the strangeness 

analog state, by analogy with isobaric analog states 6’ 7 in nuclei. strangeness 

exchange processes are similar to charge exchange processes in nuclei where 

a neutron is changed into a proton without changing the wave function. The 

isobaric analog state is a coherent linear combination of such states. SF- 

metries like isospin can enhance production of coherent analog states and 

can give them interesting properties. 

The analog state is characterized by its permutation 

symmetry. The wave function for the target nucleus is required by the 

Pauli principle to be antisymmetric with respect to all the neutrons and 

all the protons in the nucleus. No such symmetry principle exists between 

the hyperon and the nucleon, and all possible permutation states are allowed. 

The strangeness analog state for the reaction (la) is one in which a neutron 

in the target is changed into a hyperon and the exact wave function is 

unchanged, including permutation symmetry; i. e., the wave function is also 

antisymmetric with respect to interchange of any neutron and the hyperon. 

Similarly for reactions (lb) and (Z), which involve charge exchange in addition 

to strangeness exchange, the strangeness analog state has a proton changed 

into a hyperon with the wave function antisymmetric with respect to inter- 

change of any proton with the hyperon. In this paper we use the term 

“strangeness analog” state 0~ resonance for the coherent excitation which 

preserves permutation symmetry. We use the more general term 

“strangeness exchange resonance ” for any excitation produced by single 

nucleon strangeness exchange. 

1. 2 The Role of the Nucleon Hole 

When a nucleon has been changed into a hyperon without 

changing its wave function, the state originally occupied by the nucleon is 

vacant and appears as a nucleon hole. This hole is crucial to the under- 

standing of the produced continuum state. There are two approaches to 
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the analysis of the nucleon hole. In standard hypernuclear spectroscopy 

both the experimentalists and the theorists wait for this situation to settle 

down. The strong nuclear interactions produce transitions which fill the 

nucleon hole, the hyperon descends to a low-lying level, excess energy is 

given off by evaporating particles, and an equilibrium state is reached 

which is stable against further decay by strong interactions. 

It is also possible to ask what happens immediately after the 

kaon comes in and the pion goes out, before the strong interactions have 

had a chance to settle down. The hypernucleus is then in an unstable 

excited state, with a nucleon hole somewhere and a. hyperon in some level 

which may be far from its ground state. Such “particle-hole” excitations 

are common in nuclear physics, and are treated by the methods of nuclear 

reaction theory. Experiments in which the energy spectrum of the decay 

pions is measured are studying just this short time behavior of the excited 

hypernucleus. To understand these experiments, we must change our 

approach fnxn the long-time-scale approach of classical hypernuclear 

spectroscopy to the short-time-scale approach of reaction theory. 

1. 3 Digression-Be Prepared for Surprises 

We should also be prepared for surprises. The states which 

are produced in specific reactions may have very different properties from 

those of familiar low-lying bound states. The example of nuclear fission 

should be remembered as a state with a peculiar collective oscillation 

completely unexpected at the time of its discovery. There may also be 

peculiar excitation modes of hypernuclei which are unexpected on the 

basis of ou- present knowledge of nuclear and hypernuclear structure. 

Such new phenomena may well be much more exciting than the phenomena 

presently predicted by theorists. Experimentalists should be on the lookout 

for them. 

One possible indication of new hypernuclear effects induced 

by mesons is the apparent tendency of nuclei to emit alpha particles under 

the influence of mesons. Experiments with stopped kaons in nickel and 
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8 
copper by a Carnegie-Mellon-Argonne collaboration at the ZGS showed an 

anomalously large number of nuclear gamma rays identified as coming 

from nuclei which differed from the target by one, two and three alpha 

particles, as compared to very weak evidence for the production of nuclei 

with intermediate masses and charges. A recent Argonne experiment9 

examined the gamma rays produced after a 
60 

NI target was bombarded with 

500 MeV/c pions. The cross sections for the production of the first excited 

states of 56Fe and 52 Cr (formed by removing one and two alpha particles, 

respectively, from 
60 

NI) were about 7 mb, half of the cross section for 

producing the corresponding excited state in the target nucleus 6oNi itself. 

The cross section for producing the first excited state of 48Ti (three alpha 

particles removed) was about 3. 5 mb or only l/4 of the 6oNi cross section. 

No lines were seen with a limit of 2 mb for 59Ni or 59 Co which would be 

produced by the removal of one nucleon. The large production of nuclei 

which would be formed by the emission of two and three alpha particles 

from the target is very mysterious and has no counterpart in other nuclear 

reactions. So far there has been no satisfactory explanation for this effect. 

While one can imagine mechanisms which would knock out one alpha particle 

from a nucleus, the removal of two or three alpha particles without any 

additional nucleons and the comparative absence of final states in which 

unequal even numbers of protons and neutrons are emitted defies any 

conventional explanation. The true explanation could be very exciting, and 

this effect warrants further investigation. More details of these experiments 

are given elsewhere in these proceedings. 8, 9 They are not directly relevant 

to strangeness exchange resonances and are presented only as an example 

of new unpredicted phenomena which may be found. 

1.4 Spectroscopy vs. Reactions 

There is a considerable difference in approach between the 

descriptions of the long-lived states of the discrete spectrum and those of 

the short-lived continuum states in nuclei and hypernuclei. Nuclear physics 
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investigations are conveniently divided into (1) nuclear spectroscopy, which 

studies low-lying discrete states which are stable against breakup and 

(2) nuclear reactions, which studies the continuum. So far experimental 

techniques for studying hypernuclei have emphasized the discrete long-lived 

states. Thus hypernuclear physics has developed primarily in the direction 

of spectroscopy while only a small amount of work on continuum states has 

been done with stopped kaons. The availability of high-intensity kaon beams 

now makes possible detailed investigations of hy-pernuclear reactions, as we 

have seen in the experiments reported by Bressani. 
5 

To understand these 

new data, we need to develop the reaction approach. 

In nuclear and hypernuclear spectroscopy the aim is to 

provide approximate descriptions of the observed discrete states which are 

exact eigenfunctions of the nuclear Hamiltonian. In nuclear and hypernuclear 

reactions the eigenfunctions of the Hamiltonian lie in a continuum. This 

infinite set of states is of no interest to anybody. The states of interest are 

those produced in particular scattering experiments and which give rise to 

nontrivial structure in the dependence of the scattering cross section on 

kinematic variables like energy and scattering angle. Although it is 

tempting to describe resonant continuum states as if they were stable, 

using the standard techniques of spectroscopy, and to imagine that their 

coupling to decay channels can somehow be neglected, this approach is 

misleading and not strictly correct. It is impossible to separate the 

excited continuum states produced in a given experiment from the reaction 

which produced them; the two must be studied together. 

II. COMMON NUCLEAR EXCITATIONS 

To introduce the reaction approach it is instructive to 

examine four common nuclear excitations and discuss their relevance to 

hypernuclear strangeness exchange resonances: (1) Single-particle and 

single-hole excitations produced by stripping and pickup reactions, 

(2) collective particle-hole excitations like the giant dipole resonance 

produced by photons, (3) deep-lying hole excitations like those produced 
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by (p, Zp) reactions, and (4) isobaric analog resonances. In all discussions 

of these excitations the nuclear shell model plays a dominant role and the 

states are described either as containing particles in well-defined shell 

model orbits or as simple coherent linear combinations of such shell model 

states. However, the particular states considered depend strongly upon the 

reaction mechanism. 

2. 1 Stripping and Pickup 

Single-particle and single-hole excitations are produced by 

stripping or pickup reactions on a nuclear target, which either add a 

particle with well-defined quantum numbers to the nucleus or remove one 

from it. These states are not eigenfunctions of the Hamiltonian; they 

eventually decay into the continuum. The decay widths depend upon the 

residual interactions between the excited particle or hole and the remaining 

nucleons in the nucleus. The residual interactions may also split the state 

into several components to give a fine structure to the resonance. These 

continuum states are described by giving the distribution in energy of the 

“single particle strength, ” rather than giving energy levels and their 

properties as in nuclear spectroscopy. 

In hypernuclear reactions, such single-particle excitations 

are not of interest, since there is no simple way to “strip” a hyperon into 

a nucleus. Although hypernuclear physicists tend to think of a hypernucleus 

as a nucleus to which a hyperon has been added, this is not how hypernuclei 

are made in the laboratory. The reaction producing the hypernuclear state 

is always one of strangeness exchange, in which a nucleon in the nucleus is 

changed into a hyperon. A nucleon hole is therefore always produced in any 

reaction where a hypernucleus is produced. The presence of the nucleon 

hole is crucial to the understanding of the hypernuclear reaction. 

2. 2 Collective Particle-Hole Excitations 

Collective particle-hole excitations are produced as 

electromagnetic giant resonances by photon absorption which moves one 



7 

nucleon in a nucleus from one single-particle state to another. Since the 

electromagnetic current is a single nucleon operator and since the 

electromagnetic interaction is weak and acts only in first order, only a 

single particle-hole pair is excited by photon absorption. However, the 

photon can be absorbed by any nucleon in the nucleus. Thus the state 

produced is a coherent linear combination of states, each of which has only 

one excited particle -hole pair. The relative magnitude and phase of each 

state is determined by the structure of the nuclear wave function and by the 

electromagnetic interaction. The degree with which this coherence persists 

in time after the state is formed depends upon the interactions of the individual 

nucleons in the nucleus, and in particular on the scattering of the excited 

particle-hole pair into other particle-hole states. These interactions give 

rise to the observed widths and structures for the giant electromagnetic 

mscmances having definite quantum numbers, e. g., El, E3 and Mi. Here 

again the states are described in terms of the distribution in energy of a 

given strength function, rather than as well-defined approximate 

eigenfunctions of the Hamiltonian. 

2. 3 Deep-Lying Hole States 

Deep-lying hole excitations are produced by reactions lo like 

(p, Zp) in which the kinematics of the initial and final states are carefully 

chosen to correspond to the knockout of a nucleon from the nucleus with 

minimum momentum transfer to the rest of the nucleons. The state 

originally produced thus has one particle removed but all the other particles 

in their original states. If the shell model were exact, this state would be 

an exact eigenfunction of the nuclear Hamiltonian and would live forever. 

The residual interactions which are not taken into account in the simplest 

single-particle shell model allow other nucleons to jump into the hole left 

by the knocked-out particle. These interactions thus determine the lifetime 

and width of the hole state. It was one of the surprises of nuclear physics 

that these deep-lying hole states were found experimentally to live long 

enough to be observable as peaks in the spectra of the outgoing nucleons. 
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Such states have been observed at excitation energies as high as 60 MeV 

with widths of only a few MeV. 
11 

This suggests the possibility of observing 

states with 60 MeV excitation also in hypernuclei. Since the Z-A mass 

difference is only 80 MeV there might be a possibility of observing X 

hypernuclear states as resonances with widths of a few MeV. 

2. 4 Isobaric Analog States 

Isobaric analog states are produced by charge-exchange 

reactions which change a neutron in a nucleus into a proton with small 

momentum transfer, thus leaving the nucleon wave function unchanged. 

Such states are of particular interest because of isospin symmetry. 

Operating on a nuclear ground state with an isospin step operator produces 

a state which is a coherent linear combination of states in which one neutron 

has been changed into a proton or vice versa and which preserves the 

permutation symmetry of the target nucleus. This “isobaric analog state” 

would be an exact eigenfunction of the nuclear Hamiltonian if isospin were 

an exact symmetry. Because isospin symmetry is broken by the Coulomb 

interaction, converting a neutron into a proton raises the Coulomb energy 

and the analog of a discrete ground state is usually found in the continuum. 

The state decays with a finite lifetime and has a finite width because of the 

Coulomb interaction which breaks isospin symmetry. Because the residual 

Coulomb interaction between nucleons is much smaller than the strong 

nuclear interactions, these isobaric analog states have a much smaller 

width than other continuum excitations at the same energy which can decay 

by isospin-conserving strong interactions. 

Isobaric analog resonances are of great interest to nuclear 

physicists because they combine a simple theoretical structure with a source 

of rich and easily analyzed data. Their structure is much more easily 

analyzed than that of neighboring continuum states because they have a 

simple theoretical description obtained by isospin symmetry operations 

on nuclear ground states. But unlike nuclear ground states, which do not 

decay, these high-lying continuum states also have many decay channels 
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open and provide rich experimental data to indicate their composition. 

Thus they give the nuclear structure physicist the “best of both worlds”- 

the easily analyzed structure of a nuclear ground state together with the 

rich data of continuum states. 

2. 5 Comparison of Strangeness Exchange with Common Nuclear Excitations 

Strangeness analog states were first proposed because of the 

similarity with isobaric analog states. Instead of a charge exchange reaction 

in which a neutron is changed into a proton, we have a strangeness exchange 

reaction in which a nucleon is changed into a hyperon. A group-theoretical 

formalism analogous to isospin can describe such strangeness exchanges 

in the nucleus. However, it is somewhat misleading to take the analogy 

too seriously, because there is no strong interaction symmetry relating 

nucleons and hyperons which is anywhere nearly as good as isospin. Thus 

if the strangeness analog resonances are found with reasonable widths, the 

dynamical reason for the narrow width must be something other than 

symmetry. 

The particle-hole and deep-lying-hole excitations in nuclei 

may be more relevant to the physics of hypernuclear strangeness exchange 

reactions than the isobaric analog states. As mentioned above, a nucleon 

hole is always produced whenever a nucleon in a. nucleus is changed into a 

hyperon by a strangeness exchange reaction. If the active nucleon is in 

the lowest s orbit and the hyperon is produced in the same lowest orbit, 

the resulting hypernucleus has the hyperon in its ground state, but has a 

deep-lying nucleon hole. The subsequent decay of this state should be 

governed by interactions which are qualitatively similar to those which 

determine the widths of nuclear hole states. Since such hole states with 

a width of several MeV have been reported at energies up to 60 MeV it is 

reasonable to expect to see excitations at these energies in hypernuclei. 

If the active nucleon in a strangeness exchange reaction is 

not in the lowest s orbit, and the hyperon produced is left in the same 

orbit as the initial nucleon, the resultant hypernucleus has a hyperon in 
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an excited orbit as well as a nucleon hole. The excitation is thus a 

“particle-hole” excitation and can be compared with nuclear particle-hole 

excitations. If there are many such particle-hole states with very nearly 

the same energy, then a comparatively small vesidual particle-hole 

interaction can mix these states to produce giant resonances. 

In the case of nuclear isobaric analog resonances, the 

different individual particle-hole excitations produced by charge exchange 

have nearly the same energy because it costs about the same energy to 

change a neutron into a proton without changing the orbit of the nucleon, 

regardless of which orbit the nucleon is in. The energy is just the 

difference between the depths of the nuclear wells for neutrons and protons. 

In the hypernuclear case, a similar situation obtains in a simple shell model 

description with nucleon8 and hyperons moving in a potential which comes 

from the average interaction with all other particles. The range of the 

potential is determined by the size of the nucleus and is independent of 

whether the baryon considered is a nucleon or a hyperon. The difference 

between nucleon-nucleon and nucleon-hyperon forces appears only in the 

depth of the potential, not in the range. The nucleon and hyperon wave 

functions inside the well should be very similar if the principal difference 

between the Hamiltonians of nucleons and hyperons is only the depth of the 

well. The energy required to change a nucleon into a hyperon in the same 

orbit should only be the difference in well depths and should be independent 

of the orbit of the active baryon. There are therefore many particle-hole 

excitations produced by strangeness exchange which are very nearly 

degenerate. These will therefore mix as a result of the particle-hole 

interaction and coherent giant resonances can be produced. The isobaric 

analog state is the particular linear combination of nuclear charge exchange 

particle -hole excitations involving a neutron hole and an excited proton 

which has the permutation symmetry of the target. The strangeness analog 

state is the particular linear combination of hypernuclear strangeness 

exchange particle-hole excitations involving a nucleon hole and an excited 

hyperon which has the permutation symmetry of the target. 



2. 6 Three Aspects of Continuum Excitations 

All of these excitations involve a decaying continuum state 

produced by a particular reaction mechanism on a given nuclear target. 

There are thus three aspects of the excitation which must be studied: 

(i) the properties of the target nucleus, (2) the reaction mechanism and 

(3) the decay of the continuum state. The same Hamiltonian interactions 

and dynamical approximations used in treating nuclear and hypernuclear 

spectroscopy are relevant to the study of the target nucleus and the decay 

of the continuum state. However the continuum state and the target in a 

strangeness exchange process are not of the same nucleus and the ground 

state of the hypernucleus is not necessarily simply related to either. The 

continuum state has a simple relation with the nuclear target, sometimes 

called the parent state, while the hypernuclear ground state may not be 

produced at all in this reaction. 

An important difference between the treatment of the parent 

state and the continuum state is in the role of models and symmetries like 

the shell model and isospin. The parent state is treated by the standard 

methods of nuclear spectroscopy and is described by zero order wave 

functions which are calculated with the assumption that such models and 

symmetries are exact. For the decay of the continuum state the violations 

of the model and of the symmetry are crucial, since if these were exact 

such continuum states might never decay at all. For example, if the shell 

model and isospin symmetry were exact the isobaric analog state would be 

a stable stationary state. 

In the treatment of the reaction mechanism the interaction 

forces and Hamiltonian are completely unimportant. In the first 

approximation the continuum state is produced on the wave function of 

the parent state by an operator which is completely determined by the 

reaction mechanism; e.g., an operator which changes a nucleon into a 

hyperon without changing its wave function for the case of strangeness 

exchange processes. In the next approximation the dynamics of the 



reaction process enter in determining the probability or cross section for 

the reaction and the relative probability of exciting different nucleon8 in 

the nucleus. In the reactions (1), for example, the dynamics determine the 

probability that the incident kaon is absorbed before penetrating into the 

interior of the nucleus and the probability that the outgoing pions may produce 

secondary interactions. 

III. SYMMETRIES AND MODELS IN 

STRANGENESS EXCHANGE REACTIONS 

3. 1 Exact and Approximate Symmetries and Models 

In strangeness exchange reactions the models and symmetries 

used in spectroscopy play an important role but have a quite different 

interpretation. We now consider in detail the role of exact symmetries like 

rotational and space-inversion invariance, approximate symmetries like 

isospin and approximate models like the nuclear shell model. 

The exact symmetries provide classification schemes for the 

initial and final states, which must be eigenstates of angular momentum and 

parity. They also impose selection rules on the changes in angular momentum 

and parity produced by the reaction, depending upon the kinematics. This is 

discussed in detail in Section IV. 

There is never a simple answer to the question of the validity 

of approximate models and symmetries. The same model or symmetry may 

be good in one context and very bad in another. The only way to decide 

whether a model or symmetry is good in a particular case is to use your 

head. In strangeness exchange reactions models and symmetries appear 

in ways which are unfamiliar to classical spectroscopy and it is dangerous 

to jump to conclusions. 

3. 2 The Nuclear Shell Model 

The shell model is relevant to nuclear and hypernuclear 

reactions because the target nucleus on which the experiment is performed 

is generally described to a good approximation by the shell model and 
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because the reaction mechanism generally changes the state of only one 

particle and leaves the remaining particles in their original states. The 

state produced in the reaction is therefore described simply in terms of 

one or a few shell model configurations. An excitation in which the state 

of a single particle having well-defined quantum numbers is changed is 

called a single particle excitation. Excitations which are coherent linear 

combinations of many single particle excitations are often called collective 

excitations. Both types of excitations occur. 

The shell model states produced by the reaction mechanism 

are not eigenfunctions of the Hamiltonian. They therefore have a finite 

lifetime and a decay width. If the nuclear shell model were exact these 

shell model states would be exact eigenfunctions and would not decay. 

Their decay is therefore determined by the residual interactions which 

break the shell model. 

3. 3 Approximate Symmetries and Transition Operators 

The example of the nuclear shell model illustrates the three 

ways in which an approximate symmetry or model affects a reaction process. 

The initial state is described to a good approximation by the model because 

the interactions which are neglected in the model are small in some sense. 

The reaction mechanism is simply described in the framework of the model 

because the operator which formally describes the transition induced by the 

reaction mechanism has a simple form, in this case one which changes the 

state of only one particle. For the decay of the continuum state it is the 

interactions which are left out of the model which play the dominant role. 

Similar considerations apply to approximate symmetries like isospin. The 

different roles of the symmetry algebra are conveniently expressed by the 

notation of Dothan, Cell-Mann and Ne’eman 
13 

of approximate symmetry 

algebras (ASA) and transition operator algebras (TOA). The role of isospin 

in isobaric analog states is a very instructive example. 

Isospin symmetry is relevant to isobaric analog states 

because (1) the target nucleus is an isospin eigenstate to a good 



14 

approximation and (2) the reaction mechanism which changes a neutron 

into a proton without changing the wave function is described to a good 

approximation by an operator which is an isospin generator. Note that 

isospin appears in defining the state of the target as an approximate 

symmetry operator of an ASA but in the reaction mechanism it is a 

transition operator of a TOA. These two aspects of isospin are completely 

different from one another. That an experiment can be chosen in which the 

transition acts like an isospin generator is not related to the charge 

independence of nuclear forces. “Symmetry” says that neutrons and protons 

have the same interactions. “Transition operator” says that the experiment 

changes a neutron into a proton without changing the wave function 

appreciably, whether the interactions are the same or not. This difference 

is crucial, - and both aspects of isospin are essential to the proper 

understanding of isobaric analog states. 

3.4 Symmetries in Strangeness Exchange 

Strangeness analog states are very similar to isobaric analog 

states. The relevant transition operator changes a nucleon into a hyperon 

and the relevant approximate symmetry assumes that nucleon-nucleon and 

nucleon-hyperon interactions are the same. At first sight the assumption 

of equal hyperon-nucleon and nucleon-nucleon interactions seems much 

worse than the isospin assumption of charge independence of nuclear forces. 

But it is here that one must use one’s head. In considering the properties 

of the target nucleus the situation is the reverse. 

All target nuclei are very peculiar extreme cases of 

hypernuclei which contain only nucleons and no hyperons. Their wave 

functions are therefore determined completely by the nucleon-nucleon 

interaction and are completely independent of the hyperon-nucleon interaction. 

We introduce no error in the nuclear wave function if we assume a fictitious 

world in which hyperon-nucleon interactions are exactly equal to the known 

nucleon-nucleon interactions. This situation does not occur for isospin 

because all stable complex nuclei contain both neutrons and protons. If a - 
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nucleus existed which contained 7 neutrons and no protons we would know 

that it was a. pure isospin eigenstate with isospin 712 and a wave function 

completely independent of the Coulomb interaction, which breaks isospin 

but has no effect on a system containing only neutrons. 

We thus find the paradoxical situation where charge 

independence of nuclear forces seems to be a much poorer approximation 

than the strangeness independence of baryon-baryon forces in describing 

the states of target nuclei in experiments, whereas charge independence 

is much better than strangeness independence in discussing the properties 

of the two-body forces in the baryon-baryon system. This is because the 

target nuclei contain approximately equal numbers of neutrons and protons 

and no hyperons. The smalldifferences betweenproton-proton, proton- 

neutron and neutron-neutron forces affect the wave functions for these 

nuclei while the comparativelylarge differences between nucleon-nucleon, 

nucleon-hyperon and hyperon-hyperon forces have no effect because the 

nuclei contain no hyperons. 

The question remains whether the transition operator 

describing the reaction mechanism is in some approximation a generator of 

the strangeness-changing symmetry algebra analogous to isospin. This 

question is considered in terms of the Sakata SU(3) symmetry 
13 

and is 

discussed in detail in Section VI. There is also the question of how the 

difference between hyperon-nucleon and nucleon-nucleon interactions 

which breaks the symmetry affects the decay of the continuum state. 

These questions are considered in more detail below. 

IV. KINEMATICS, IMPULSE APPROXIMATION AND 

SELECTION RULES IN THE REACTION MECHANISM 

4. 1 The Role of Quasi-Two-Body Kinematics 

Kinematics plays a crucial role in strangeness exchange 

reactions. To excite strangeness exchange states the kinematics must be 

chosen for minimum momentum transfer so that one nucleon can undergo the 

transition while the rest of the nucleus remains undisturbed. As an analogous 
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example consider the (p, 7-p) experiment in which an incident high-energy 

proton knocks out a proton from a nucleus in a quasi-elastic two-body 

collision. The outgoing protons are measured at energies and angles 

corresponding to the kinematics of such a quasi-free collision. 

At first sight the use of simple quasi-two-body kinematics 

appears to be an assumption of the impulse approximation. This seems 

unreasonable since protons interact strongly with nucleons in the nucleus 

and it seems unlikely that a knock-out process can occur without any 

additional interaction of the rest of the nucleus with the incident proton or 

one of the outgoing protons. The crucial feature of this type of experiment 

is the concentration of desired events in a very tiny portion of phase space 

where the background is very nearly zero. In any event where additional 

interactions occur between the incoming 07 outgoing protons and the rest 

of the nucleus there will no longer be two outgoing protons with energies 

and angles nearly satisfying the kinematic constraints for quasi-two-body 

scattering. These additional interactions thus remove the event from 

consideration but do not increase background in the desired region of phase 

space. The relevant background is so low that an observable effect can be 

obtained even if the signal is reduced by absorption by an order of magnitude. 

Thus kinematics allows the experiment to select just those events for which 

the impulse approximation is apparently valid, and to separate these events 

from a background in which additional interactions take place. 

The direct analog of the (p, 2p) reaction for the case of 

strangeness exchange is the reaction (2) with the energy and angle of the 

outgoing pions chosen to correspond to zero momentum transfer to the 

nucleus. Feshbach and Kerrnan have pointed out that zero momentum 

transfer is also obtainable for the exothermic reactions (I) with single 

pion emission if the incident kaon has the proper momentum. If the 

incident kaon and the outgoing pion have the same momentum, there is no 

momentum transfer to the nucleus, while the energy transfer can be any- 

thing from zero to the K-n mass difference, depending upon the momentum 
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of the incident kaon. The beautiful experiments reported5 at this meeting 

have made use of the Feshbach-Kerman kinematics. 

4. 2 Angular Momentum, Parity and Symmetry Selection Rules 

The kinematical constraints from angular momentum and 

parity conservation are also of interest. If the kinematics are chosen for 

zero momentum transfer, there is also zero angular momentum transfer. 

Thus for an even-even target nucleus, with J 
P 

= Of, only 0 
t 

excited states 

can be reached 

t 
hp = 0 -t AJ = 0; only 0 3 Of allowed. (3a) 

For finite momentum transfer, with the pion emitted in the direction of the 

momentum transfer (i. e., forward) only natural parity exchange (P = (-l)J) 

is allowed. Thus for an even-even target, only 0 , f i-, 2+, etc. states can 

be reached. 

Ap forward •) P = (-i)AJ; only Ot -) Ot, l-, 2’, . allowed. (3b) 

Note that this selection rule applies also to experiments with stopped kaons, 

where the pion is always emitted in the direction of the momentum transfer. 

Other symmetries can provide additional selection rules. 

For example, if the transition operator transforms in a definite manner 

under isospin, the change in isospin is restricted. The strangeness exchange 

transition operator which annihilates a nucleon and creates a /‘I hyperon 

transforms under isospin like a T = i isospin or, since the annihilated nucleon 

carries isospin 4 and the A has zero isospin. This leads to the following 

selection rule for strangeness exchange states, 

IA’I 1 = $ for strangeness exchange transitions. (3c) 

If the transition operator is a generator of a higher symmetry, the excited 

state produced must be a member of the same symmetry multiplet as the 

initial state. This applies to isospin symmetry in the excitation of isobaric 

analog states, and to the Sakata SU(3) symmetry in the excitation of 

strangeness analog states. 
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4. 3 Detailed Analysis of the Case of i60 

Let us now examine in detail how symmetries restrict the 

relative magnitudes and phases of the different single-particle strangeness 

exchange transitions in a given experiment and determine the conditions 

for the production of an analog state. As an example we consider the case 

of lb 0 for which the new experimental data are available. 

of i6 

The ground state 

0 has the s 
i/2’ ‘312 

and p 
112 

levels filled. A strangeness exchange 

reaction produces a nucleon hole in one of these shells and a A particle in 

the same shell. The excited states which can appear in these !i particle- 

nucleon hole configurations are listed in Table I. 

Table I 

Strangeness exchange excitations in 
16 

0 

Configuration Spin and parity of excitation 

-1 
s1/2’ s1/2 

I)+ if 

-1 
‘3/2’ ‘312 

o+ 1+ z+ 3+ 

-1 
Pil2’ p1/2 

of if 

_____--___-_____________________________----- 

-1 
‘i/2’ ‘312 

1+ 2+ 

-1 
‘312’ ‘112 

it 2+ 

We have included the configurations where the baryon makes 

a transition between the p 
112 and ‘3/Z 

orbits during the strangeness exchange 

process. These can be excited at finite momentum transfer since the added 

momentum can change orbital angular momentum but not spin and can change 

the couplings of the spins and orbital angular momenta. It is instructive to 

compare the shell-model configurations for the ground states of 
16 

0, the 
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ground state of the hypernucleus 
16 

AO, and the excited state 
16 :F 

AO produced 

by strangeness exchange, say in the s shell. These are listed in Table II, 

assuming the jj-coupling shell model. 

Table II 

Shell Model Configurations for 
16~~ 16 

, 
A 

o and Go::: 

NlXleLls I60 
16 

A0 

16 :: 

A0 

Pi/2 
shell occupancy nn pp n PP nn PP 

p3/2 
shell occupancy nnnn PPPP nnnn PPPP nnnn PPPP 

s 1l2 shell occupancy nn pp A nn PP * n PP 

JP Of o-, i- Of 

Table II illustrates the similarity between the configurations of the parent 

state and the strangeness exchange state, and the difference between both 

of these and the hypernuclear ground state. In this case the hypernuclear 

ground state has opposite parity and cannot be excited at all at zero 

momentum transfer because of the selection rule (3a). The strangeness 

exchange state in Table I differs from the ground state of the hypernucleus 

by having a neutron excited from the s 
iI2 

shell to the p 
i/z 

shell; it is thus 

a nucleon particle-hole excitation of the hypernucleus with parity change. 

The simplest symmetry rotational invariance plays 

a very important role in restricting the allowed linear combinations of 

single-particle excitations produced by a particular reaction. Consider 

the reaction (la) on a 
16 

0 target, in which any one of the eight neutrons 

in the nucleus can be converted into a A. Rotational symmetry tells us 

not to consider the eight individual states in which a neutron in a well- 

defined single-particle orbit has been transformed into a A. Such states 

are not eigenfunctions of the total angular momentum. Instead we must 
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consider the states listed in Table I which are linear combinations of 

single-particle-single-hole excitations with the angular momenta of the 

particle and the hole coupled to a definite total angular momentum. The 

eight states thus become grouped into three 0 
t 

states, three i 
t 

states, and 
t 

one each of 2 and 3’. If no momentum is transferred in the process, there 

is no preferred direction in space defined by the transition, and no angular 

momentum is transferred. Thus only the three Of states are allowed and 

all the others forbidden. With finite momentum transfer in the forward 

direction, only the 0 
t t 

and 2 states are allowed and the others forbidden. 
t 

In this case the two additional 2 states from p 
i/2 -) ‘312 

transitions can 

be present, since the momentum transfer which acts only in the orbital 

space can decouple spin and orbit. 

At zero momentum transfer, the particular linear combination 

of the three allowed 0 
t 

states which is produced in the reaction is not 

determined by rotational symmetry alone. A higher symmetry could choose 

one particular combination. If the strangeness exchange process acts 

equally on all neutrons in the nucleus it does not change the permutation 

symmetry of the nuclear wave function and the analog state is produced. 

In the creation of the analog state wave function IA) all neutrons have an 

equal probability of being excited. 

1-4) = ; Idz ~~~~~~~~~~~~~ + Jpi12, I~,~-‘) + Is~,~,s~,~-~)~ (4) 

The statistical factor dz appears because the statistical weight of the 
-1 

‘312’ ‘312 
configuration is double that of the others. 

If the reaction mechanism does not act equally on all nucleons 

the state produced is not the analog state (4). However, even with the 

extreme assumption that the kaon is completely absorbed at the surface of 

the nucleus and can only excite p-shell nucleons without entering the s shell, 

the resulting state still has a large overlap with the analog state (4). The 

state with the s 
112 

component removed from (4) has an overlap of 87% with 

the analog state. 
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4. 4 Transitions between s 
112 

Orbits 

There is one case where hypernuclear ground states might 

be easily excited by strangeness exchange. S uppose the highest orbit for 

the nuclei in Table II had been a radially excited s 
112 

orbit instead of a 

pi I2 
orbit. Then strangeness exchange in this orbit would produce a state 

with the same quantum numbers as the hypernuclear ground state, differing 

only by radial excitation of the A. In such a case there might be an 

appreciable probability for producing the hypernuclear ground state in a 

strangeness exchange reaction. Because of the differences between the 

nucleon and h wells, the wave functions for the radially excited s 
112 

nucleon and the ground state s 
l/2 

A need not be orthogonal and there might 

be an appreciable overlap. This point might be of particular interest for 

the production of Z analog states, as discussed in Section VII. 

Strangeness exchange experiments on nuclei with high-lying 

radially excited s 
112 

orbits should show this effect as peaks in the outgoing 

pion spectrum with higher energies than those expected from strangeness 

analog states. If the s 
i/z 

orbit is exactly the last valence orbit, the ground 

state of the hypernucleus would be produced. If the s 
iI2 

orbit is near the 

top but is not the very last orbit, a low-lying excited state should be produced. 

Nuclear targets for observing this effect can be selected either by looking at 

tables of shell model configurations or by looking at experimental data on 

nuclear pickup reactions to find cases with a weakly bound s 
ii2 

nucleon. 

Since the cross section for exciting the low-lying hypernuclear state depends 

on the overlap of the s 1,2 hyperon ground state and s 
112 

nuclear excited 

state wave functions which should vanish if the wells are the same, these 

excitations might provide interesting information on the differences between 

nucleon and hyperon wells in a nucleus. The relevant overlap integrals 

could be calculated from theoretical models. Because the Coulomb potential 

can appreciably affect these overlaps, significant differences can exist 

between neutron and proton excitations and between A, Cf and C- production. 
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The study of s 
112 

transitions thus appears to be a promising 

line of strangeness exchange research. 

V. DYNAMICS OF THE DECAY PROCESS 

The continuum state produced by strangeness exchange decays 

into the continuum of two-particle and multiparticle states as a result of the 

residual interaction between the hyperon and the nucleon. It is always 

instructive to look at the decay both from the point of view of time develop- 

ment and the complementaryenergy spectrum. If this state has a relatively 

long lifetime it appears as a narrow peak in the energy spectrum of the 

outgoing pions in the reaction (1). If the state decays immediately after it 

is formed its width in energy is so large that it will not be observable as a 

peak in the pion spectrum but only contribute a continuous background. In 

experiments one generally expects to find an intermediate case between 

these two extremes; the state produced consists of several components one 

of which decays immediately and the others live long enough to appear as 

one or more resonant peaks against the continuous background provided by 

the short-lived component 

5. 1 Particle-Hole Interactions and Symmetries 

The strangeness exchange state produced by the reaction 

mechanism is a linear combination of states involving a single hyperon and 

a nucleon hole. It is convenient to divide the residual interaction into two 

parts. The first acts only in the space of the A-particle-nucleon-hole states, 

the second connects these states to the other states which are the final states 

for the decay. The first interaction determines which linear combinations of 

these particle hole excitations appear as isolated peaks in the energy spectrum 

and determines the excitation energies and the splittings between the compo- 

nents, The second part of the residual interaction determines the decays 

and widths of these peaks. If the particle-hole interaction is known exactly, 

the energies and splittings are obtained by diagonalizing the interaction in 

the subspace of A-particle-nucleon hole states. Any symmetries present 

simplify this diagonalization. 
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In the case of 
16 

0 shown in Table I rotational symmetry 

separates the 8 possible A-particle-neutron-hole states into the 8 eigen- 

functions of total angular momentum. If the reaction mechanism insures 

that there is no angular momentum transfer, only 0 
+ 

states are produced 

and the particle-hole interaction matrix relevant to our discussion is the 

3 X 3 matrix in the subspace of 0 
t 

states. If there are no further symmetries 

the eigenvectors and eigenvalues of this 3 X 3 interaction matrix defines 

3 states appearing at 3 different excitation energies. These states are 

defined completely independently of the state produced by the reaction 

mechanism. The experimental spectrum of the outgoing pions in the 

reaction (1) then has 3 components having strengths determined by the 

overlap of the state produced by the reaction mechanism with each of the 

3 states which are eigenvectors of the particle-hole interaction matrix. 

The excitation energies and splittings of these states are determined by 

the eigenvalues of the interaction matrix. 

If an additional symmetry is present, as in the case of 

isobaric analog resonances,then the analog state will be one of the eigen- 

vectors of the interaction matrix. If, furthermore, the transition operator 

defined by the reaction mechanism is to a good approximation also a 

symmetry generator as in the case of isobaric analog resonances, a single 

peak will be dominant corresponding to the excitation of the analog state. In 

the case of the strangeness analog state there is no good symmetry like 

isospin, but other factors like the validity of the nuclear shell model and 

permutation symmetry of the interaction may still favor the excitation of 

the analog state. 

It is not surprising that the experimental results quoted for 
16 

0 show possible evidence for an additional state. 
5 

Even if the analog 

transition is dominant, it would not be expected to carry 100% of the reaction 

strength function. With sufficient sensitivity and high resolution, all three 

states should be seen. Note that the analog state (4) is a linear combination 

of the state obtained by adding a p i,2 hyperon to the ground state of the 
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hype rnucleus 
15 

0 and states obtained by adding a hyperon in a different 

orbit to “excited core” states. All three states obtained by diagonalizing 

the particle-hole interaction matrix can be expected to be linear combina- 

tions of the form (4) with different coefficients, but containing all three 

components. It is therefore misleading to characterize these excitations 

as having either a ground state core or an excited core; the two kinds of 

states will certainly be mixed by the particle-hole interaction. 

5. 2 Nucleon and FL Shell Model Potentials 

We first consider the diagonal components of the energy in 

the different shell-model configurations such as the 3 listed in Table I. If 

the shell model potential for a L differs from that for a nucleon moving in 

the same nucleus only by a different well depth, the diagonal energies are 

the same for all configurations and represent simply the difference between 

the well depths for the fi and the nucleon. This implies that it costs the 

same energy to change a nucleon into a A regardless of the particular shell 

that the nucleon is in. Howeve T, one can also ask whether the well depth is 

really shell independent; i. e., whether there are nonlocal components in the 

potential which can make the energy required to turn a nucleon into a A in 

the p shell quite different from the energy required in the s shell. This is 

still an open question and determines the degree of coherence of the different 

components of the strangeness exchange state. 

If in a case like lb 0 very different excitation energies are 

required in the s and p shells, this only destroys the coherence between 

the s and p components of the wave function (4) for the analog state. The 

p wave component which is still coherent has an overlap of 87% with the 

analog state. There are thus two completely different physical effects 

which can remove the s-wave component from the coherent state produced 

by strangeness exchange. In the reaction mechanism the kaon can be 

absorbed before reaching the central s orbit. In the decay a difference in 

excitation energy of the s and p states can destroy coherence. But both 

effects leave intact 87% of the analog state. 



25 

5. 3 Permutation Symmetry and the Residual Interaction 

For the nondiagonal part of the interaction, permutation 

symmetry may favor the analog state. The strangeness analog state is 

characterized by having the same permutation symmetry as the parent 

state; i. e., the hyperon is in an antisymmetric state with respect to all 

of the neutrons in the hypernucleus. If this antisymmetrization maximizes 

or minimizes the energy, then the analog state is an eigenvector of the 

interaction matrix by the variational principle. If the most important part 

of the residual interaction is a two-body force between particles in a relative 

s-state, permutation symmetry is preserved. The 3S and ‘S states have 

different angular momenta as well as permutation.symmetry; thus angular 

momentum conservation requires conservation of permutation symmetry in 

two-body interactions. The totally antisymmetric state of the many-particle 

system will thus be an eigenstate of the interaction and will either have the 

maximum or the minimum eigenvalue depending upon whether the anti- 

symmetric ‘S two-body interaction is greater or smaller than the symmetric 

3S interaction. In the nucleon-nucleon case the symmetric state has the lower 

energy; thus the antisymmetrized isobaric analog state is pushed 2 by the 

residual interaction. For the AN interaction the antisymmetric singlet state 

is lower for s-wave interactions and higher partial waves seem to have 

considerably smaller interactions although not very much information is 

available. l4 This would indicate that the antisymmetric analog state can 

be expected to be an eigenstate of the interaction matrix with the minimum 

energy. In contrast to the isobaric analog state, the strangeness analog 

state is pushed down in energy by the interactions. 
4 

5. 4 Estimates of Excitation Energies and Decay Widths::: 

With the aid of available data on properties of nuclei and 

hypernuclei, the excitation energies of the strangeness analog states has 

;:The treatment in this section follows that of reference 4, where additional 

details can be found. 
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been estimated 
4 

to be about 10 MeV in light nuclei like 
12 

C and about 

30 MeV in heavy nuclei. The difference in energy between the analog 

state and the parent state is just the difference between the J? and nucleon 

well depths, since the permutation symmetries of the two states are the 

same. However, the excitation energy of the analog state is specified 

with respect to the ground state of that hypernucleus. We must therefore 

add to the well depth the energy difference between the parent and hyper- 

nuclear ground states; namely the energy required to remove a A from the 

s-orbit and to add a nucleon into the highest orbit. This process costs the 

A binding energy B,,, for the hypernucleus and gains the nucleon separation 

energy B for the parent nucleus. Adding the difference V 
n *A 

between the 

depths of the A and nucleon wells then gives the excitation energy of the 

analog state as shown in Fig. 1, taken from ref. 4. 

A similar result is obtained by considering the analog state 

as a particle-hole excitation from the hypernuclear ground state and 

correcting for the symmetry energy due to antisymmetrization of the 

hyperon with the neutrons. In the shell model approximation where all 

particle-hole states involving the .same shells are degenerate, estimates 

of the particle-hole excitation energy are obtained from the experimental 

single particle energies. The analog state is thus lower than this 

unperturbed particle-hole energy by the symmetry energy. 

The matrix elements of the residual interaction between the 

analog state and the continuum determine the lifetime and width of the 

analog state. Without detailed knowledge of the residual interaction it is 

difficult to calculate these widths quantitatively. However, qualitative 

estimates are obtainable by comparison with comparable nuclear 

excitations. When a nucleon in a stable nucleus is changed into a A 

without changing its wave function, the resulting wave function would be 

an exact eigenfunction of the nuclear Hamiltonian if the nucleon-nucleon 

and A-nucleon interactions were equal. Thus it is not the full residual 

interaction which contributes to the decay of strangeness exchange states, 

but only the difference between hyperon-nucleon and nucleon-nucleon 
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residual interactions. This is much larger than the differences between 

proton-proton, neutron-proton and neutron-neutron interactions produced 

by the isospin-symmetry-breaking Coulomb interaction which determines 

the decay of isobaric analog states. However, it is also considerably 

smaller than the entire nucleon-nucleon residual interaction which 

determines the decay of those nuclear continuum excitations which are 

not isobaric analog states. Thus experimental data on these two types of 

nuclear excitations can give lower and upper limits on the expected widths 

for hypernuclear strangeness exchange resonances. 

There are two kinds of decay processes, one in which the iA 

escapes from the nucleus and one in which a nucleon escapes. The A-escape 

probability is determined by the residual interaction of the h with all other 

nucleons in the nucleus. These add together to give an average field in 

which the A moves. The escape of the A is therefore due to the change in 

this average field when the baryon changes from a nucleon to a A. The 

diagonal matrix element of this change in average field is just the well 

depth differences which gives the energy shift, as discussed above. The 

off-diagonal elements describe the escape of the A from the nucleus. This 

average field can be compared with the Coulomb field which determines the 

energy shifts and widths of isobaric analog states. The average symmetry- 

breaking field in the hypernuclear case is of the same order of magnitude as 

the Coulomb field in the isobaric case, even though the Coulomb interaction 

is apparently much weaker. Because of its long range, the average Coulomb 

interaction seen by a nucleon is due to all other nucleons while the average 

symmetry-breaking nuclear interaction is short range and is due only to 

nearest neighbors. This can be checked quantitatively by noting that the 

Coulomb energy for a proton in a heavy nucleus and the difference between 

nuclear and A well depths are comparable in magnitude. Thus A-escape 

widths should be comparable to escape widths of isobaric analog states in 

heavy nuclei. 
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Nucleon escapes involve single two-body matrix elements 

which are not summed over particles to give an average field. The only 

matrix elements relevant to a particular nucleon escape is that involving 

the A and the nucleon that escapes. Since these two-body matrix elements 

are not summed, they should be less important than A escape and should 

give a smaller contribution to the width. For an independent check on this 

estimate, the experimental escape widths of comparable excitations in 

nuclei can be used as upper limits on hypernuclear nucleon escape widths, 

as discussed above. 

VI. SAKATA SU(3) SYMMETPY:: 

6. 1 Introduction 

The octet model of unitary symmetry, which has been 

successful in particle physics, is not useful for nuclear and hypernuclear 

physics. The principal reason is the iic mass difference of 80 MeV, which 

is small on the energy scale of particle physics but very large on the energy 

scale of nuclear binding energies. Hypernuclei observed in nature are known 

to contain a A and not a Z since a C could decay into a A and provide an 

excitation energy of 80 MeV to the nucleus. The octet-model description 

of hypernuclei would classify them in states containing linear combinations 

of A’s and C’s. 

The old Sakata triplet model 
13 

attempted to create all hadron 

states out of the basic npA triplet. This model is no longer relevant to hadron 

physics and has been superseded by the octet. However, the complex nuclei 

and hypernuclei having strangeness 0 and - 1 are indeed composed only of 

members of the basic Sakata triplet. It is therefore useful to consider 

hypernuclear spectroscopy from the point of view of the Sakata model by 

using the triplet rather than the octet model of unitary symmetry. 

“‘The treatment in this section follows that of reference 4, where additional 

details can be found. 



Triplet unitary symmetry assumes that the a4-nucleon 

interaction is the same as the nucleon-nucleon interaction. Although this 

symmetry is a very poor approximation for the two-body system (in contrast 

to charge independence, which is very good and violated only by small 

electromagnetic contributions), the Sakata symmetry is useful for the 

many-particle states having strangeness 0 and -1 (the states that so far 

have been found to be relevant to hypernuclear spectroscopy). As we have 

seen in Section 3. 4, all strangeness zero nuclei are automatically good 

eigenstates of Sakata SU(3), and the t~ransition operator describing strange- 

ness exchange at zero momentum transfer is a generator of Sakata SU(3). 

In the discussion of the decay of strangeness exchange resonances, we have 

seen that the primary breaking of Sakata SU(3) symmetry is due to the 

difference between the nucleon-nucleus and the ~-nucleus interactions 

rather than the two-body interactions. The validity of the shell-model 

description of complex nuclei allows us to replace the major portion of the 

sum over two-body interaction by an average field in which the single nucleon 

or hyperon moves. The radius of the baryon-nucleus interaction potential is 

determined by the size of the nucleus and is independent of whether the baryon 

considered is a nucleon or a A. The latter affects only the depth of the well. 

Thus the major breaking of the Sakata symmetry for these states results 

from the differences in the well depths seen by the nucleon and the A. This 

gives a large diagonal contribution to the energy of a nucleus or hypernucleus, 

but may not change the wave function too much from that given under the 

assumption of Sakata SU(3) symmetry. The symmetry-breaking effects 

that would mix in other SU(3) representations and destroy the purity of the 

Sakata state are smaller effects depending on differences in the shape of 

the neutron and A wells and differences in the residual two-body interaction. 

6. 2 U-Spin and V-Spin Analog States 

It is convenient to describe Sakata SU(3) in terms of the three 

SU(3) subgroups commonly called isospin, U spin and V spin which operate 
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respectively in the n-p, A-n and p-A spaces, as shown in Fig. 2. The 

isospin, U-spin and V-spin operators satisfy commutation rules like 

angular momenta among themselves. We define the raising and lowering 

operators with the conventions of particle physics, so that 

T+ln) = !p) (5=) 

T-lp) = !-I) (SW 

U+IA) = in) (5c) 

u In) = In) (54 

v+/p: = !A) (Se) 

v- iA) = !p) (5f) 

The stable nuclei used as targets and available for the parent 

state In) in a strangeness exchange reaction have no A’s, Thus 

u+~n) = v- Ill) = 0. (64 

For nuclei which are on the neutron-rich end of an isospin multiplet, 

7 irr)=o (6’4 

and 

T ITT) = -Tn)d (6~) 

where T ~ is the isospin of the state ITT). Note that the U-spin and V-spin 

relations (6a) are satisfied exactly while the isospin relation (6b) is only 

approximate because of the isospin symmetry breaking by the Coulomb 

interaction. This expresses the peculiar symmetry properties of target 

nuclei discussed in Section 3. 3, where U spin and V spin are better than 

isospin. 

Three of the six step operators (5) thus annihilate the 

target nucleus. 
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For targets of isospin zero, like 
12 

C and 
16 

0, all isospin 

operators annihilate the state, and the remaining two U-spin and V-spin 

step operators, U and V+, create the strangeness analog states commonly 

called U-spin and V-spin analog states. The U-spin and V-spin step 

operators transform under isospin like T = i isospinors as discussed in 

Section 3. 4, and the selection rule (3~) applies. Thus the U-spin and 

V-spin analog states for a T = 0 target have T = i and are members of 

the same isospin doublet. 

For targets with T 
z 

= -T # 0, the isospin step operator T+ 

creates the isobaric analog state, which has T = T ~, TZ = Tn f i. The 

U- and V-spin analog states can have two possible isospins, Tn i- i. Since 

the U-spin analog state has TZ = -Tn + $, while the V-spin analog state has 

TZ = -Tn - p, the V-spin analog state is an isospin eigenstate with isospin 

Tn t $, while the U-spin analog is a mixture of the two isospins Tn -t i. 

The exact mixing of the isospins can be calculated from SU(3) algebra. 

If the Sakata SU(3) symmetry were exact, all the step operators (5) would 

commute with the Hamiltonian, all analog states would be degenerate with 

the parent, and the U-spin analog state would be a linear combination of 

two isospin eigenstates which would individually be degenerate eigenfunctions 

of the Hamiltonian. 

Here the breaking of SU(3) becomes crucial. The eigenstates 

of the real hypernuclear Hamiltonian are the isospin eigenstates (we neglect 

the Coulomb interaction). These states are not degenerate, but are split 

by the symmetry energy, which arises because the two isospin eigenstates 

have different permutation symmetries with respect to interchanging neutrons 

and protons. In the SU(3) symmetry limit, this symmetry energy is exactly 

compensated by the difference in the A-nucleon interaction in the two states, 

which also have different permutation symmetries with respect to the A and 

the other nucleons. However, the A-nucleon interaction is much weaker 

than the nucleon-nucleon interaction, and its dependence on permutation 

symmetry goes in the opposite direction from that of the nucleon-nucleon 

interaction (the antisymmetric state lies lowest). The effect of the A-nucleon 
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interaction on the splitting can be neglected in first order, and the conven- 

tional nucleon symmetry energy can be used to give an estimate of the 

splitting between the two components of the U-spin analog state. 

Figure 3, taken from ref. 4, shows the energy level diagram 

for the parent state, the V-spin analog jSp) and the two components IS>) =nd 

!S : of the U-spin analog having greater and lesser isospin, respectively. 
< 

The diagram is taken from ref. 4 which gives a more detailed analysis of 

the SU(3) Sakata algebra and its application to analog states. 

The discussion of Section 5. 4 and the energy level diagram 

of Fig. 1 applies to the V-spin analog state ISp). 

The higher isospin component !S,) of the U-spin analog 

state is the isobaric analog of the V-spin analog state IS j, 
P 

IS>) = T+ ISp). (7) 

The energy of IS,) thus differs from that of \Sp) just by the Coulomb 

energy of the additional proton. The energy of IS<) differs from that of 

IS>) by the symmetry energy. 

VII. SIGMA HYPERNUCLEAR STATES 

The possibility of observing sigma hypernuclear states 

should be reexamined in view of the new experimental techniques available 

for producing hypernuclear continuum excitations. Stable nuclei containing 

C’s are not expected because the C in a nucleus can turn into a A with a 

release of 80 MeV in reactions like 

c- t p-+Atn (84 

Et t n+l?tp. (W 

These reactions (8) are always possible, except in a system of maximal 

1sospm; e. g., a z- and one or more neutrons with no protons. So far 

searches for such low mass hypernuclear states with maximum isospin 

have been unsuccessful. 



33 

The available decay energy of C hypernuclei must be of the 

order of 80 MeV because of the C-A mass difference. The decays of these 

states via the reactions (8) can be compared with the decays of deep-lying 

nucleon-hole states via the comparable nucleon-nucleon scattering reaction. 

Since such nuclear excitations with energies of 60 MeV have been observed 

in (p, 2p) experiments, it is reasonable to expect C strangeness exchange 

resonances with excitation energies of 80 MeV to be observable. 

The double charge exchange reaction (ic) provides a 

convenient mechanism and a unique signature for the production of Z 

strangeness-exchange resonances. With Feshbach-Kerman kinematics 

the background should be very small and these states should be easily 

detected if they are produced at all and have reasonable widths. 

The principal factor determining the possibility of observing 

C hypernuclei is the decay width; i.e., whether states exist whose decays 

are sufficiently slow to allow them to be seen. Since the width depends 

strongly on the available energy, the most favorable cases are those 

where binding and Coulomb energy effects in the transition partially 

compensate for the X-ii mass difference. Decays via the reactions (8) 

involve a nucleon charge exchange, producing either a proton hole and an 

excited neutron or vice versa. In heavy nuclei with a neutron excess, the 

reaction (8b) is possible with the nucleon remaining in the same orbit after 

n-p charge exchange. In the reaction (Ba) with p-n charge exchange the 

nucleon must jump to a higher orbit in making the transition since all 

orbits occupied by protons are already occupied by neutrons. 

Thus hypernuclei containing a C- should have a longer lifetime 

than those containing a C 
t 

as the loss in the nuclear binding energy in the 

reaction (8a) partially compensates for the gain in the Z-A mass difference. 

Coulomb effects can provide additional binding for the 

C-hypernuclear state. Although the initial and final states for the reaction (Ba) 

have the same electric charge, the Coulomb energy is less in the initial state 

if the C is in the center of the nucleus and the proton is on the surface. Thus 

if the reaction (8a) occurs with a proton near the center of the nucleus there 
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is a loss in binding energy in changing it into a neutron in an unoccupied 

state, while if the proton is near the surface there is also a loss in binding 

because of the increased Coulomb energy. Thus a hypernuclear ground 

state with a C- in its lowest orbit may have less than 80 MeV available for 

the decay and may be observable as a resonance with reasonable width if 

a suitable production mechanism can be found. 

Unfortunately, strangeness exchange reactions like (ic) are 

not very good for producing hypernuclear ground states. They produce a 

nucleon hole, unless the nucleon undergoing strangeness exchange happens 

to be in the outer valence shell. The hypernuclear ground state can be 

produced in a heavy nucleus by a strangeness exchange reaction in which a 

nucleon in a valence shell is transformed into a C and simultaneously jumps 

to the lowest shell. This seems extremely improbable, except for s 
1/2 

valence orbits, but cannot be ruled out completely. If such transitions 

occur in the reaction (ic) they will be observable in the energy spectrum 

of the outgoing pions. 

A more probable transition in the reaction (ic) is strangeness 

exchange with the Z remaining in the same orbit as the initial nucleon. If 

this is the lowest s orbit, a deep-lying hole state is produced in addition to 

the C; thus the energy of the hole excitation must be added to ther-A mass 

difference to give total excitation energies over 100 MeV. This is partially 

compensated by the Coulomb energy shift in replacing the positively 

charged proton by the negatively charged C‘. The magnitude of this shift 

can be estimated from the known Coulomb energy shifts in single-charge- 

exchange transitions between isobaric analog states. These are about 

15 MeV in heavy nuclei. One would expect double this shift or 30 MeV from 

double charge exchange. The shift might be greater in deep interior shells 

of the nucleus, since isobaric analog transitions always involve the neutron 

excess orbits in the outer shells. These arguments are not intended to be 

precise or conclusive, but just to indicate that the numbers are in a reasonable 

enough ball park to encourage further investigation, both theoretical and 

experimental. 
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The decay of a C strangeness exchange state with a nucleon 

hole and a C in an inner shell would have to be at least a two-step process. 

The reaction (8a) which converts a Z to a I! cannot fill a proton hole and 

might create an additional proton hole. This might decrease the width 

from that estimated from what is known from deep lying nuclear hole states 

at comparable excitation energies, where the decay can take place in a 

single transition via the residual nucleon-nucleon interaction. 

The one favorable case for the production of a hypernuclear 

ground state or a very low-lying excited state is that of a nuclear target 

which has a high-lying s 
i/z 

valence orbit. As discussed in Section 4. 4, a 

strangeness exchange on a nucleon in such an s 
112 

orbit produces an s 
iI2 

hyperon with a radially excited wave function which might have appreciable 

overlap with the ground state hyperon orbit. A nucleus with a weakly 

bound s 
iI2 

orbit thus seems to be the most suitable target for the first 

attempts to find C hypernuclei. 
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FIGURE CAPTIONS 

Fig. 1. Energy-level diagram for strangeness analog states; (a) in 12c , 

and (b) in a heavy nucleus. 

Fig. 2. Isospin, U-spin and V-spin step operators in the Sakata model. 

Fig. 3. Schematic representation of the strangeness analog states and 

the transitions from the parent. 
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